
  

 

Abstract—Reduced manning requirements and other cost 

reducing measures have spurred interest in automation of 

engineering plants onboard naval combat vessels. Furthermore, 

automation may increase resiliency of shipboard engineering 

plants when compared to the current generation of manually 

configured plants. This paper presents a control algorithm and 

deployment strategy which supervises a ship’s chilled water 

plant to control the temperature of thermal loads (e.g., air 

chillers, electrical components). Redundant computation and 

communication capabilities motivates the use of an agent-based 

controller (ABC) enabled through a peer-to-peer wireless 

network. In the architecture presented, each agent sits on one 

or more digraphs corresponding to the utility generated by the 

fluid exiting the chilled water plant at each discharge point. 

Each digraph is a component of the decentralized model-

predictive controller (MPC). Performance of the proposed 

control architecture is tested in simulation, and is shown to 

approach the performance of an effective, but computationally 

exhaustive, centralized MPC.  

I. INTRODUCTION 

uture naval vessels may be rendered more resilient 

through the U.S. Navy’s explorations of the all-electric 

ship (AES) design concept. In the AES, an integrated power 

system combines a ship’s two largest plants, the electrical 

system and powertrain, coupling previously independent 

engineering plants [1]. This paper considers a chilled water 

plant and electrical system coupled through the operation of 

pumps, valves, sensors, and electrical thermal loads (e.g., 

radar and pulsed weapons systems) [2]. The U.S. Navy is 

interested in automating these systems so as to reduce 

manning requirements on ships without sacrificing fight-

through capabilities [3]. Effective automated reconfiguration 

of the interconnected ship plants will require dense arrays of 

sensors and actuators [4]. Building a layer of computational 

intelligence atop this network will facilitate automated plant 

reconfiguration in the face of battle damage.  

Successful operation of a large-scale networked control 

system is critically dependent upon the communication 
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pathways’ ability to deliver information from the sensors to 

the controller and from the controller to the actuators in real-

time. The wired communication systems used today, mainly 

copper wiring and fiber optics, have long been the viable 

options for these communication systems on ships [5]. 

Recent developments in wireless technology and standards 

threaten to shift this paradigm. The downfalls of the wired 

paradigm might include the complexity and cost of 

installation through bulkheads and tight spaces, repair 

difficulty after inevitable damage from long-term 

deterioration or battle, and the rising cost of commodity 

copper. It has been estimated that a fifty percent reduction in 

cost can be seen with the adoption of the wireless 

communication paradigm [3] while maintaining security 

with encrypted communication [6]. The difficulty of 

transmitting wireless data in the metallic chambers of ship 

hulls was shown to be a surmountable challenge in recent 

research for both control [3] and monitoring systems [7], [8]. 

The paradigm shift from wired to wirelessly networked 

control systems entails more than a one-to-one replacement 

of communication links. The centralized wired control 

system designer limits the number of sensors and actuators 

in the system in an effort to reduce the computation burden 

on the centralized controller. Achieving redundancy by 

duplication of all the wiring and computing further reduces 

cost effectiveness. Conversely the architecture proposed 

herein empowers the control designer with the ability to 

implement dense arrays of sensors and actuators which 

would otherwise overwhelm centralized wired control 

schemes [4]. The sharing of the computational load amongst 

all the agents in the peer-to-peer network maintains 

computational and communication redundancy. 

The distributed controller presented herein was 

fundamentally designed to work on a network of wireless 

nodes such as Narada [9]. Specifically, this paper presents a 

model predictive controller (MPC) that has been 

decentralized into two coupled MPCs; each collocated with 

a pump. The hierarchy in which the sensing, computation, 

and actuation are decentralized provides redundant 

communication pathways to provide resiliency in case of 

system damage and/or node failure. Plant and controller 

irregularities can be detected by system identification and 

fault detection software also distributed across the network 

in the form of wireless nodes with microcontrollers [10]. 

MPC, or receding horizon control, is well suited for 

controlling nonlinear plants with relatively easily modeled 

nonlinear dynamics and actuator constraints. At every 
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control instant, an MPC utilizes a system model initiated 

with the current state to select a permissible open-loop 

control action that maximizes the utility of that action. Due 

to the extensive use of MPC in industry, the theory has been 

thoroughly studied in academia giving rise to formal 

assurances of robustness and stability on for certain 

controller architectures and plant types [11], [12]. The idea 

of distributing an optimization problem over a web of 

agents, i.e., agent-based control (ABC), has been studied 

theoretically [13] and for a wide variety of problem types 

from environmental building monitoring and control, to 

naval applications [14–16]. This paper presents a 

decentralized model predictive controller (DMPC) for 

physical systems in which the flow of utility can be 

represented as a collection of directed trees, e.g., chilled 

water plants. The sub-optimality of the proposed controller 

was carefully balanced with the implications of using an 

IEEE 802.15.4 network for agent communication. 

II.  CHILLED WATER PLANT DEMONSTRATOR SYSTEM 

Engineering plants that are essential to a ship’s operation 

often produce waste heat and must maintain temperatures 

below critical levels preventing premature degradation or 

dangerous scenarios. Cooling is accomplished through 

redundant chilled water loops in which heat is removed and 

directed through a pipe network to a heat exchanger where 

the heat is released to the sea. In need of a test bed to verify 

decentralized chilled water plant controller performance, a 

simplified bench-scale model, the University of Michigan 

Chilled Water Demonstrator (UMCWD), Fig. 1, was 

designed and fabricated based on the larger demonstrator 

housed at the Naval Surface Warfare Center [17].  

Fig. 2 shows the schematic of the demonstrator with two 

12 volt Graylor PQ-12 DC pumps drawing water from the 

chilled water reservoir and forcing it through open/closed 

STC 2W025-1/4 solenoid valves. The valve and pump 

configurations determine the coupled flow rates, measured 

by DigiFlow DFS-2W flow meters, through pipes 1A, 1B, 2, 

3A, 3B, and 4 which provide chilled water to the thermally 

coupled T1-T2 and T3-T4 thermal load pairs. The coupling 

between the electrical and chilled water plant is achieved 

using 70 Watt resistive heaters affixed beneath each 10 x 5 x 

2.5 cm
3
 aluminum block; two 1.25 cm diameter holes drilled 

have been drilled along the length of each block through 

which chilled water flows. As the heaters disturb the system, 

causing the thermal load temperatures to reach critical, Tc, or 

danger, Td, temperature thresholds, the proposed wirelessly 

networked control system determines appropriate pump and 

valve configurations to mitigate the effect of heating while 

minimizing system energy use. Actuators (two pumps and 

four valves) and sensors (four block thermometers, an air 

thermometer, a reservoir thermometer, and a flow meter for 

each of the six pipes), each have a collocated wireless node 

for data processing, communications, and execution of the 

control algorithm. 

III. PLANT DYNAMICS 

The dynamics of thermal loads in a chilled water plant are 

adequately modeled by forced convective heat transfer. The 

rate of heat removed from component i,  ̇    
, by chilled 

water through pipe j, is a linear function of the difference in 

temperature between the component,    
, and the chilled 

water,    
, when the area of contact, Ai,j, and the heat 

transfer coefficient, hi, j, between the body and the heat sink 

(i.e., water) are held constant. The relationship between 

block temperature and flow rate    is nonlinear as seen in 

(1). The empirically derived exponential function (2) 

characterizes well the relationship between a flow qj and the 

heat transfer coefficient. The coefficients in (2) were 

identified as α = 1.36 and τ = 0.49 for the UMCWD system.   
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The conservation of energy equation, (5), is used to 

compute the temperature of block   with mass, mi. 

Essentially, it is a summation of the heat flow rates from: 

each pipe through a given block; heat loss to the air,  ̇  
 by 

 
Fig. 1. The University of Michigan Chilled Water Plant Demonstrator 

 
Fig. 2. Fluid flow schematic of the University of Michigan Chilled 

Water Plant Demonstrator 



  

(3), with temperature Ta; the heat exchange between coupled 

block pairs i and l,  ̇    
 by (4), with block temperatures Tbi 

and Tbl; and the heat input  ̇  
.  

Additional nonlinearities are introduced by saturation of 

pump speeds and valve authority. Although the system has 

these complex dynamics and actuator constraints, if model 

parameters can be estimated, either through system 

identification or derived theoretically, simulation of a given 

open loop control trajectory can be computed using 

numerical integration techniques for hybrid systems [18] 

assuming steady state flow rates through the pipe network. 

The switching speed of the valves and pumps, and thus flow 

rates, is significantly faster than the thermal dynamics being 

controlled which allow the system to be modeled as a 

switched linear system with constant pump speeds, valve 

configurations, and flow rates between switches. System 

identification of the UMCWD was performed using a series 

of forcing functions that isolated the different model 

parameters enabling the use of linear least-squared 

parameter estimation methods. 

IV. MODEL PREDICTIVE CONTROL 

The MPCs used herein work by initializing a numerical 

integration with the current state of the system which is 

measured by temperature sensors on each block, and 

optimize the estimated utility generated by a constant open-

loop control configuration from the current instant until the 

end of a defined time horizon. A suitable controller should 

efficiently compute the solution to the optimization problem 

such that time between re-optimizations is sufficiently short.  

A. Benchmark Centralized MPC 

A centralized MPC (CMPC) aggregates all the sensor data 

into a single processing unit at each time step where the 

control algorithm is executed. Once a control decision has 

been made, the centralized computer disseminates the 

prescribed actions to each actuator. An implementation of a 

CMPC for a chilled water plant might, at each control instant 

t, measure the system state (i.e., component temperatures), 

estimate point source heat inputs (i.e., thermal load rates), 

and then search through the predicted utilities from all 

possible pump speeds and valve configurations to find the 

highest utility assuming the heat inputs and the selected 

control decision remain constant until the end of the 

prediction horizon t+K (i.e., constant future CMPC). The 

system-wide utility achieved at each estimation step, k, is the 

sum of the utility lost by each pump, the utility lost by each 

valve, and the utility gained by each thermal load when 

cooled by the fluid passing through its pipes, each weighted 

by a utility conversion coefficient, γp, γv, and γt respectively. 

Utility of an action, interpreted herein as the measure of 

relative satisfaction of a given action, is computed as the 

cost of doing nothing subtracted from the cost of that action.  

The estimated thermal cost,   ̂ 
 |

  
, for a given block i, at 

a step k along the prediction horizon, (and with respect to 

flow qj through pipe j) is computed according to (6) as a 

function of the predicted block temperature at that instant, 

 ̂  

 , and a pair of user defined threshold temperatures Tc and 

Td. These temperatures set quadratic and quartic costs 

respectively when the block temperatures exceed the critical 

and dangerous temperature thresholds. This tuple should be 

specified by the control engineer to ensure safe and proper 

equipment operation. The thermal utility,   ̂ 
 |

  
, at time t 

with respect to flow qj through pipe j, which is constant 

along the entire prediction horizon, t…t+K, is computed by 

(7) and is equal to the cost of zero flow along the horizon 

subtracted from the cost when the flow through pipe j is 

equal to qj.  
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The estimated cost,   ̂ 
 |

  
, of running pump i at a given 

speed   
          is assumed to be tied to the cost of 

electricity used to power the pump. From the system 

identification performed on the demonstrator, the power 

curve for the pumps is characterized by a cubic function (8) 

where the coefficients were identified as: a=1.38x10
-5

, 

b=6.23x10
-4

, c=2.54x10
-2

. Since zero energy is consumed 

when not running the pump, the utility of a given pump 

speed,   ̂ 
 |

  
   ̂ 

 |
  

, is equal to the cost of running the 

pump at that speed. 
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Typical valves used in naval chilled water plants are 

turned open and closed by a seaman, either manually or with 

a motor controller. As such, the controller should derive the 

utility from the real-life valve operation and incurs a cost, 

  ̂ 
 |

  
, computed by (9) that is nonzero only when the 

position,   
 , of valve i changes from the previous step, k-1. 

Similar to the pump, the valve utility   ̂ 
 |

  
   ̂ 

 |
  

 is 

equal to the valve cost at each instant. 
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The implausibility of searching through all system 

configurations for an optimal open-loop control in real time 

lead the authors to consider the decentralization of the MPC 

across a wireless network. However, for the simplified 

bench-top demonstrator studied herein, a CMPC serves as an 

excellent benchmark for the performance of the 



  

decentralized MPC to be proposed. The benchmark CMPC 

computes the estimated utility, given an estimate of the heat 

input to each block and measured block temperatures, for 

961 realizable configurations with 10 discrete pump speeds. 

The configuration with the greatest predicted utility is 

applied until the next control instant. Through the 

specification of different estimation horizons and utility 

conversion rates, the CMPC can be tuned to prevent 

temperature overshoot, reduce valve switching, or encourage 

greater energy reduction. 

B. Decentralized Model Predictive Control (DMPC) 

Even for simplified chilled water plants, such as the 

UMCWD, a centralized exhaustive search CMPC must 

sample slowly even on a modern desktop PC. MPC may still 

be plausible if partially decoupled, distributing the 

computation load across a network of computing devices. 

Graphing of the utility generation pathways through each of 

the six effluent pipes was used as the template for the 

UMCWD MPC decomposition. In Fig. 3, the cooling 

capability of each unique pipe 1a, 1b, 2, 3a, 3b, and 4 is a 

directed acyclic graph. These digraphs serve as the 

communication topology for the agent-based DMPC 

proposed. Serially, the flow versus utility curve in each of 

the digraphs is computed assuming the flow through all the 

other pipes remains constant. The dependence with respect 

to flows through pipe combinations necessitates iteration of 

the serial optimization process to minimize the difference 

between realizable and desired flows. Under certain 

conditions (e.g. convex agent costs and linear constraints) 

convergence of all the variables shared between components 

of a DMPC will lead to a control decision with the same cost 

as an equivalent CMPC [19]. These conditions are too strict 

for the specific problems studied in this paper, but as 

Camponogara, et al. noted, the overly restrictive conditions 

of the equality between DMPC and CMPC may be relaxed, 

yet nearly yield equality in experimental studies [19]. 

 

1) Control-step Timeline 

Four different types of agents (flow, valve, pump, and 

thermal) collaborate at each control step to complete the 

distributed optimization of global utility. The optimization 

problem is completed by an iterative process of local 

optimization and communication of utility functions along 

the graph depicted in Fig. 3. Computation and 

communication in each control step is outlined below: 

 

(1) Agents send and receive private information (i.e., 

current state) with peers on the same pipe. 

(2) A flow agent, Fi, begins the optimization process. 

The chosen flow agent Fi asks the thermal agent, Tj 

directly below in the directed acyclic graph Gi of pipe i, 

for the predicted utility gained by the system as a function 

of flow through pipe i. 

(3) Since thermal agent Tj can only compute its own 

contribution to the graph’s thermal utility agent Tj must 

communicate with the next agent Tk down graph Gi and 

sum the two utility functions. If agent Tk is not a leaf 

node, Tk continues the cascade of communication down 

and back up graph Gi until the sum of all the agents’ 

predicted utilities is received by agent Tj. 

(4) Once agent Fi has the graph’s predicted utility, it 

passes this information up to the valve agent Vm above 

agent Fi on graph Gi. Agent Vm combines the updated 

predicted utility with earlier obtained utility curves of all 

other graphs passing through Vm to formulate the systems 

utility for the flow through valve m. 

(5) Agent Vm sends its updated utility curve to its root 

agent, pump n. Root agent Pn combines the earlier 

obtained utility curves of all other graphs passing through 

Pn to formulate the systems estimated thermal utility for 

the flow through pump n. With knowledge of the system’s 

predicted thermal utility for its flow, agent Pn is able to 

choose a pump speed and request an action for its children 

that balance the predicted (non-negative) utility obtained 

by the thermal agents with the (non-positive) cost of 

running the pump and changing valve positions.  

(6) Without applying these actions, agent Pn begins the 

cascade of these requested actions back down all graphs 

that pass through it until all affected agents are informed 

of the change in the pump’s requested action.  

(7) The updated requested system state is now used as 

the new starting point for the next flow agent.  

(8) Steps 2 through 7 are repeated until all pipes have 

been selected at least once and there is an insignificant 

change in requested actions between iterations. This 

agreed upon system state is then applied and the agents 

idle until the beginning of the next control step, at which 

point the whole process is repeated. 

 

Following the communication and agent topology 

outlined above and in Fig. 3 the agents aim to agree upon an 

action that maximizes the systems predicted utility. The four 

different types of agents, defined by their unique collocated 

resources, are described in detail below.  
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Fig. 3. Unbraided di-graphs of the utility generating components of 

the flow through each return pipe on the UMCWD. 



  

2) Thermal Agents 

The leaf agents, T1…T4, at the end of each branch in Fig. 

3 each represent the thermal utility of a single block. At the 

beginning of each control instant, each thermal agent 

receives limited amounts of its neighbors’ private 

information (i.e., current temperature) which enables the 

agent to adequately predict thermal utility of all relevant 

flows. This information consists of the current temperature 

and estimated thermal load of the adjacent block, the 

ambient air temperature, and the temperature of the water 

into each of the adjacent block’s orifices. With this shared 

information and the agent’s private information, the agent 

can model the thermal utility of the flow through any of its 

own or its neighbors orifices. The model used by some 

thermal agents (e.g., T1) is only approximate due to the lack 

of information about how a block upstream (e.g., T3) might 

influence the temperature of the incoming water (e.g., 

through pipe 3b). The agents assume the water temperature 

change is negligible over the prediction horizon in order to 

account for this lack of information. The utility predicted is 

computed using a two state discrete-time state space model 

linearized around the flow rates. 
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Fig. 4. General form of the exact and approximated agent thermal 

utility curves. 

The general form of the computed flow rate versus 

predicted utility curve is shown in Fig. 4. To minimize 

bandwidth requirements the utility curves are approximated  

as shown in Fig. 4 as a bilinear function wholly described by 

a pair (q*, u*). Knowing the general form, the agent’s parent 

can decode the pair to reconstruct the approximated 

estimated utility curve. 

3) Flow Agents 

The flow agents, F1a...F4, serve to represent each unique 

pipe. They are capable of measuring the flow rate in their 

respective pipe so that the pumps and valves may confirm 

the flow rates produced. The flow agents also communicate 

with their children to aggregate the predicted pipe utility 

versus flow rate. The approximated predicted utility curves, 

represented by a (q*, u*) pair for each agent, are summed 

into a piecewise linear curve. The general form of the 

aggregated predicted utility is presented in Fig. 4. 

4) Valve Agents 

Agents V1…V4 are capable of actuating the valves, serve 

to aggregate the predicted utilities of all their children, and 

pass the aggregated utility to the pump agents. The 

aggregation of the utilities of the valve’s children is similar 

to the aggregation done by the flow agents. However, the 

valve agents must consider downstream bifurcations. 

Bifurcations are accounted for using a steady state fluid 

model to determine the amount of flow and thus utility 

generated on each branch.  

5) Pump Agents 

Presented with two aggregated curves, one from each 

downstream valve, the pumps consider four arrangements to 

generate utility. One, the pump could turn off and generate 

zero flow and utility. Two, the pump directs both 

downstream valves to open and models the utility bifurcated 

to each valve. The intersection of the thermal utility curve 

(shifted down by    for each valve that must change state) 

with the pumps utility curve identifies the optimal flow with 

respect to the graph being optimized. Similarly, the pump 

considers only one open valve which receives all the flow 

and utility generated. The pump’s task is to identify which of 

these four configurations produces the greatest predicted 

utility. 

V. CONTROLLER DESIGN 

The DMPC presented herein requires the specification of 

ten non-model-based parameters; only a subset of which are 

specified to each agent. The ten parameters required for a 

full controller design are the controller update time-step 

(Δtctrl), critical and danger temperatures (Tc, Td), weights on 

the pump, valve, and thermal utilities (γp, γv, γt), the 

prediction horizon length (K), discrete possible flow rates 

(    ⃗⃗ ⃗⃗ ⃗⃗  ⃗), possible pump speeds (     
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗), and the number of 

iterations of the optimization process required to reasonably 

assure convergence (N). A longer Δtctrl, the only parameters 

specified to all agents, will give the system more time to 

either refine the optimization process or complete other 

computation tasks required by the network. Conversely, a 

shorter Δtctrl speeds up the controller’s dynamics to better 

track changes in the system disturbances. 

Thermal agents determine the utility received for each 

flow rate in (    ⃗⃗ ⃗⃗ ⃗⃗  ⃗) by estimating the thermal cost incurred 

over a prediction horizon, t+(1…K )Δtctrl and subtracting that 

cost from the thermal cost of zero flow. As the set (    ⃗⃗ ⃗⃗ ⃗⃗  ⃗) 

increases, the thermal agent’s approximated discretized 

utility curves will more closely match the actual continuous 

utility curves, at the cost of increased computation time. 

Similarly, an increase in K increases computation time, with 

the benefit of better prediction of the response of a given 

action, assuming that action is maintained indefinitely into 

the future. Excessive values of   may degrade performance 

due to poor prediction caused by unforeseen changes in 

thermal loading. The computational cost associated with 

changes in the number of elements, n, in (    ⃗⃗ ⃗⃗ ⃗⃗  ⃗) is O(K∙n). 

An increase in the critical and/or danger temperature will, 

ceteris paribus, decrease the amount of thermal utility 

received  



  

The utility of the flow’s thermal utility, valve costs, and 

pump costs are weighted by γt, γv, and γp respectively. As the 

number of elements, m, in the set (     
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗) increases, the 

pump can more accurately maximize the estimated utility 

but at the cost of an increased computation time of O(3
m
) for 

two valve children. 

While the ten parameters described above are the only 

parameters that must be selected by the control engineer, 

there are additional model-based parameters. These 

parameters, such as heat transfer coefficients and pipe 

friction coefficients, come from fundamental physics or 

system identification. 

VI. SIMULATION RESULTS 

Efficacy of the controller is determined in two ways. 

Firstly the results of the DMPC of Section IV.B will be 

compared with the results of the CMPC of Section IV.A. 

The results of this comparison in which both controllers are 

realized with identical parameters will show how closely the 

DMPC can track the optimal result. Five cost metrics (i.e., 

thermal cost, pump costs, valve costs, run time, and 

communication requirements) make up the second method to 

assess the performance of the DMPC.  The first three metrics 

are all similar to the parts of the utility function the 

controller is maximizing, while the run time and 

communication requirements reflect the computational 

complexity and implementation challenges. The run time 

cost metric presented as “percent real-time” is the number of 

seconds used by the processor, in this case a 3.2GHz Intel i5, 

for one control step, divided by the length of the control 

step. Note though, that the percent real-time metric is 

computed using a single CPU, while in the actual 

implementation of the DMPC, the computing tasks will be 

distributed across the network on microcontrollers. None the 

less, it gives a feel for the computation costs. 

A. Time History Comparison 

To emulate persistent loads (e.g., turbines) and 

intermittent loads (e.g., pulsed weapon systems) a loading 

pattern was developed to validate the performance of the 

controllers. Thermal loads T1 and T2 are classified as 

persistent 70 W loads that engage ten seconds into the test 

and remain on for the remainder of the 1000 second test. 

Thermal loads T3 and T4, emulate a 70 W intermittent load 

that pulses on for 120 s starting at t=130 s and reengages at 

t=490s with a duration of 240 s. 

The controllers used during benchmark analysis were: (1) 

an open-loop system with all valves open and pumps at 10%, 

and (2) the model-predictive agent-based and (3) centralized 

controllers with the following parameters:    

                                      

               . The thermal trajectories graphed in 

Fig. 5 show similar system state paths for both the CMPC 

and DMPC solution. Both MPCs are able to minimize the 

amount of time spent within the critical thermal zone while 

consuming less pump power than the open-loop solution. 

The results from the five cost functions shown in Table I 

show the DMPC proposed in this paper is more 

computationally and communication intensive. However the 

increase in complexity is mitigated by distributing the 

computational load amongst all of the processors of the 

agents in the network. Also, the DMPC architecture is better 

suited for handling node failure and other computational 

tasks such as system identification and model updating. 

B. Parametric study 

The same controller parameters used in the time history 

comparison were individually manipulated and the resulting 

controlled system simulated in an extensive parametric 

study. Reasonable perturbation in the parameters       ,   , 

  ,   ,   ,   ,     ⃗⃗ ⃗⃗ ⃗⃗  ⃗, and      
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ confirmed the relations 

predicted in Section V. Large variations in parameters lead 

to unpredictable results, as would be expected. For instance, 

once        reached about 60 s the DMPC can no longer 

effectively control either the pump or thermal costs. 

Similarly, insufficiently short or long prediction horizons 

lead to poor controlled performance due to the DMPCs 

ability to accurately predict the full utility of a given action.  

Strict convergence of the iterative optimization which is 

integral to the DMPC is not guaranteed. Both continuous 

and discrete states and actions, results in the iterations 

chattering between multiple decisions which all have similar 

utility. By studying Fig. 6, it is seen that the DMPC has total 

costs,     (         )     ⁄ , similar to that of the 

centralized controller regardless of the number of iterations. 

 
Fig. 5. DMPC versus CMPC simulation result 
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   /second % Real Time Communications/Step 

Constant speed (10%) 0.556 651 0.00401 1.3 0 

Centralized 887 208 0.0300 192 48 

Agent-Based Controller 9.22 254 0.0822 218 524 
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In the future, it may be possible to program intelligence into 

the DMPC such that it only iterates enough times necessary 

to converge to an appropriate solution in order to reduce 

computation time. 

VII. CONCLUSIONS 

The U.S. Navy’s quest for reduced manning requirements 

may be aided by agent-based controllers such as the DMPC 

presented here. This DMPC is suboptimal, but costs and 

tuning parameters retain a physical sense of meaning and 

balance sub-optimality with computational and network 

bandwidth efficiency. The thermal cost function is more 

analogous to the actual penalty incurred by the thermal loads 

(i.e., critical and danger temperatures may be exceeded if 

necessary for brief periods of time) when compared to more 

traditional control requirements (e.g., quadratic costs or 

strict safe operating sets). Designed specifically for chilled 

water plant application, this DMPC may be generalized to 

control dynamic systems in which states are directly 

measured and the flow of utility can be mapped onto 

overlaying digraphs. The four classes of agents, embedded 

on wireless sensors and actuators, collaborate to achieve a 

closed loop control solution which approaches the 

effectiveness of a benchmark CMPC. The agent-based 

control architecture leaves open the option for installation of 

additional software modules on the agents performing online 

system identification or fault detection. The results of which 

can be used to remove failed agents from the system, 

without disproportionate performance loss (i.e., system wide 

performance loss is at worst proportional to the utility 

produced by the lost agent). Additionally, if changes to the 

flow model are identified (e.g., pipe rupture) the model used 

by the MPC may be updated to ensure predicted utility 

closely matches the utility achieved. 
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Fig. 6. Total cost versus ABC iterations 
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